Brain cancer stem cells display preferential sensitivity to Akt inhibition.
نویسندگان
چکیده
Malignant brain tumors are among the most lethal cancers, and conventional therapies are largely limited to palliation. Novel therapies targeted against specific molecular pathways may offer superior efficacy and less toxicity than conventional therapies, but initial clinical trials of molecular targeted agents in brain cancer therapy have been frequently disappointing. In brain tumors and other cancers, subpopulations of tumor cells have recently been characterized by their ability to self-renew and initiate tumors. Although these cancer stem cells, or tumor initiating cells, are often only present in small numbers in human tumors, mounting evidence suggests that cancer stem cells contribute to tumor maintenance and therapeutic resistance. Thus, the development of therapies that target cancer stem cell signal transduction and biology may improve brain tumor patient survival. We now demonstrate that populations enriched for cancer stem cells are preferentially sensitive to an inhibitor of Akt, a prominent cell survival and invasion signaling node. Treatment with an Akt inhibitor more potently reduced the numbers of viable brain cancer stem cells relative to matched nonstem cancer cells associated with a preferential induction of apoptosis and a suppression of neurosphere formation. Akt inhibition also reduced the motility and invasiveness of all tumor cells but had a greater impact on cancer stem cell behaviors. Furthermore, inhibition of Akt activity in cancer stem cells increased the survival of immunocompromised mice bearing human glioma xenografts in vivo. Together, these results suggest that Akt inhibitors may function as effective anticancer stem cell therapies.
منابع مشابه
PI3K/Akt inhibition and down-regulation of BCRP re-sensitize MCF7 breast cancer cell line to mitoxantrone chemotherapy
Objective(s):Multidrug resistance (MDR) of cancer cells is a major obstacle to successful chemotherapy. Overexpression of breast cancer resistance protein (BCRP) is one of the major causes of MDR. In addition, it has been shown that PI3K/Akt signaling pathway involves in drug resistance. Therefore, we evaluated the effects of novel approaches including siRNA directed against BCRP and targeted t...
متن کاملThe Emerging Role of the Phosphatidylinositol 3-Kinase/ Akt/Mammalian Target of Rapamycin Signaling Network in Cancer Stem Cell Biology
The cancer stem cell theory entails the existence of a hierarchically organized, rare population of cells which are responsible for tumor initiation, self-renewal/maintenance, and mutation accumulation. The cancer stem cell proposition could explain the high frequency of cancer relapse and resistance to currently available therapies. The phosphatidylinositol 3-kinase (PI3K)/Akt/mammalian target...
متن کاملInvestigating the role of signaling pathways and cancer stem cells in esophageal cancer with a therapeutic approach
Esophageal cancer (EC) is the sixth main cause of cancer death worldwide. Important genes associated with esophageal cancer include FOXO3, AKT, and GSK3β. Excessive FOXO3 expression inhibits the proliferation of cancer cells. The expression of AKT is involved in controlling cell growth in tumors. GSK3β activity is higher in cancer tissues. Given the effective role of cancer stem cells (CSCs) in...
متن کاملPI3K/Akt/mTOR and CDK4 combined inhibition enhanced apoptosis of thyroid cancer cell lines
Introduction Thyroid cancer is a malignant disease with poor prognosis. The PI3K/Akt/mTOR and Cyclin-Dependent Kinase 4 (CDK4) pathways are vital regulators of tumor cell proliferation and survival. Therefore the present study was designed to use dual inhibition of such pathways to kill thyroid cancer cells. Methods and materials The effects of each inhibitors on human ATC and...
متن کاملPI3K/Akt/mTOR and CDK4 combined inhibition enhanced apoptosis of thyroid cancer cell lines
Introduction Thyroid cancer is a malignant disease with poor prognosis. The PI3K/Akt/mTOR and Cyclin-Dependent Kinase 4 (CDK4) pathways are vital regulators of tumor cell proliferation and survival. Therefore the present study was designed to use dual inhibition of such pathways to kill thyroid cancer cells. Methods and materials The effects of each inhibitors on human ATC and...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Stem cells
دوره 26 12 شماره
صفحات -
تاریخ انتشار 2008